Red Queen dynamics in multi-host and multi-parasite interaction system

نویسندگان

  • Jomar F. Rabajante
  • Jerrold M. Tubay
  • Takashi Uehara
  • Satoru Morita
  • Dieter Ebert
  • Jin Yoshimura
چکیده

In host-parasite systems, dominant host types are expected to be eventually replaced by other hosts due to the elevated potency of their specific parasites. This leads to changes in the abundance of both hosts and parasites exhibiting cycles of alternating dominance called Red Queen dynamics. Host-parasite models with less than three hosts and parasites have been demonstrated to exhibit Red Queen cycles, but natural host-parasite interactions typically involve many host and parasite types resulting in an intractable system with many parameters. Here we present numerical simulations of Red Queen dynamics with more than ten hosts and specialist parasites under the condition of no super-host nor super-parasite. The parameter region where the Red Queen cycles arise contracts as the number of interacting host and parasite types increases. The interplay between inter-host competition and parasite infectivity influences the condition for the Red Queen dynamics. Relatively large host carrying capacity and intermediate rates of parasite mortality result in never-ending cycles of dominant types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Red Queen Dynamics with Non-Standard Fitness Interactions

Antagonistic coevolution between hosts and parasites can involve rapid fluctuations of genotype frequencies that are known as Red Queen dynamics. Under such dynamics, recombination in the hosts may be advantageous because genetic shuffling can quickly produce disproportionately fit offspring (the Red Queen hypothesis). Previous models investigating these dynamics have assumed rather simple mode...

متن کامل

Host-parasite coevolutionary dynamics with generalized success/failure infection genetics.

Host-parasite infection genetics can be more complex than envisioned by classic models such as the gene-for-gene or matching-allele models. By means of a mathematical model, I investigate the coevolutionary dynamics arising from a large set of generalized models of infection genetics in which hosts are either fully resistant or fully susceptible to a parasite, depending on the genotype of both ...

متن کامل

Ecological and Evolutionary Oscillations in Host-Parasite Population Dynamics, and The Red Queen

In a host-parasite system, the constitutive interaction among the species, regulated by the growth rates and functional response, may induce populations to approach equilibrium or sometimes to exhibit simple cycles or peculiar oscillations, such as chaos. A large carrying capacity coupled with appropriate parasitism effectiveness frequently drives long-term apparent oscillatory dynamics in popu...

متن کامل

Red Queen strange attractors in host–parasite replicator gene-for-gene coevolution

We study a continuous time model describing gene-for-gene, host–parasite interactions among self-replicating macromolecules evolving in both neutral and rugged fitness landscapes. Our model considers polymorphic genotypic populations of sequences with 3 bits undergoing mutation and incorporating a ‘‘type II’’ non-linear functional response in the host–parasite interaction. We show, for both fit...

متن کامل

Host-parasite Red Queen dynamics with phase-locked rare genotypes

Interactions between hosts and parasites have been hypothesized to cause winnerless coevolution, called Red Queen dynamics. The canonical Red Queen dynamics assume that all interacting genotypes of hosts and parasites undergo cyclic changes in abundance through negative frequency-dependent selection, which means that any genotype could become frequent at some stage. However, this prediction can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015